Arylacetamide deacetylase is a determinant enzyme for the difference in hydrolase activities of phenacetin and acetaminophen.

نویسندگان

  • Akinobu Watanabe
  • Tatsuki Fukami
  • Shiori Takahashi
  • Yuki Kobayashi
  • Nao Nakagawa
  • Miki Nakajima
  • Tsuyoshi Yokoi
چکیده

Phenacetin was withdrawn from the market because it caused renal failure in some patients. Many reports indicated that the nephrotoxicity of phenacetin is associated with the hydrolyzed metabolite, p-phenetidine. Acetaminophen (APAP), the major metabolite of phenacetin, is also hydrolyzed to p-aminophenol, which is a nephrotoxicant. However, APAP is safely prescribed if used in normal therapeutic doses. This background prompted us to investigate the difference between phenacetin and APAP hydrolase activities in human liver. In this study, we found that phenacetin is efficiently hydrolyzed in human liver microsomes (HLM) [CL(int) 1.08 +/- 0.02 microl/(min . mg)], whereas APAP is hardly hydrolyzed [0.02 +/- 0.00 microl/(min . mg)]. To identify the esterase involved in their hydrolysis, the activities were measured using recombinant human carboxylesterase (CES) 1A1, CES2, and arylacetamide deacetylase (AADAC). Among these, AADAC showed a K(m) value (1.82 +/- 0.02 mM) similar to that of HLM (3.30 +/- 0.16 mM) and the highest activity [V(max) 6.03 +/- 0.14 nmol/(min . mg)]. In contrast, APAP was poorly hydrolyzed by the three esterases. The large contribution of AADAC to phenacetin hydrolysis was demonstrated by the prediction with a relative activity factor. In addition, the phenacetin hydrolase activity by AADAC was activated by flutamide (5-fold) as well as that in HLM (4-fold), and the activity in HLM was potently inhibited by eserine, a strong inhibitor of AADAC. In conclusion, we found that AADAC is the principal enzyme responsible for the phenacetin hydrolysis, and the difference of hydrolase activity between phenacetin and APAP is largely due to the substrate specificity of AADAC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Species differences in tissue distribution and enzyme activities of arylacetamide deacetylase in human, rat, and mouse.

Human arylacetamide deacetylase (AADAC) is a major esterase responsible for the hydrolysis of clinical drugs such as flutamide, phenacetin, and rifampicin. Thus, AADAC is considered to be a relevant enzyme in preclinical drug development, but there is little information about species differences with AADAC. This study investigated the species differences in the tissue distribution and enzyme ac...

متن کامل

A novel polymorphic allele of human arylacetamide deacetylase leads to decreased enzyme activity.

Human arylacetamide deacetylase (AADAC) is responsible for the hydrolysis of clinically used drugs such as flutamide, phenacetin, and rifamycins. Our recent studies suggested that human AADAC is a relevant enzyme pharmacologically and toxicologically. To date, the genetic polymorphisms that affect enzyme activity in AADAC have been unknown. In this study, we found single-nucleotide polymorphism...

متن کامل

Screening of specific inhibitors for human carboxylesterases or arylacetamide deacetylase.

Esterases catalyze the hydrolysis of therapeutic drugs containing esters or amides in their structures. Human carboxylesterase (CES) and arylacetamide deacetylase (AADAC) are the major enzymes that catalyze the hydrolysis of drugs in the liver. Characterization of the enzyme(s) responsible for drug metabolism is required in drug development and to realize optimal drug therapy. Because multiple ...

متن کامل

Dmd056994 1103..1109

Esterases catalyze the hydrolysis of therapeutic drugs containing esters or amides in their structures. Human carboxylesterase (CES) and arylacetamide deacetylase (AADAC) are the major enzymes that catalyze the hydrolysis of drugs in the liver. Characterization of the enzyme(s) responsible for drug metabolism is required in drug development and to realize optimal drug therapy. Because multiple ...

متن کامل

Dmd056994 1103..1109

Esterases catalyze the hydrolysis of therapeutic drugs containing esters or amides in their structures. Human carboxylesterase (CES) and arylacetamide deacetylase (AADAC) are the major enzymes that catalyze the hydrolysis of drugs in the liver. Characterization of the enzyme(s) responsible for drug metabolism is required in drug development and to realize optimal drug therapy. Because multiple ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 38 9  شماره 

صفحات  -

تاریخ انتشار 2010